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An elastic rod model of a protein-bound DNA loop is adapted for application in multi-scale simulations of
protein-DNA complexes. The classical Kirchhoff system of equations which describes the equilibrium structure
of the elastic loop is modified to account for the intrinsic twist and curvature, anisotropic bending properties,
and electrostatic charge of DNA. The effects of bending anisotropy and electrostatics are studied for the DNA
loop clamped by the lac repressor protein. For two possible lengths of the loop, several topologically different
conformations are predicted and extensively analyzed over the broad range of model parameters describing
DNA bending and electrostatic properties. The scope and applications of the model in already accomplished
and in future multi-scale studies of protein-DNA complexes are discussed.
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I. INTRODUCTION

Protein-DNA interactions are of primary importance for
living organisms. Proteins are involved in organizing and
packing genomic DNA, synthesizing new DNA, reading the
information stored in the genes, and controlling the level of
expression of each gene �1,2�. The amount of data on
protein-DNA interactions both in vivo and in vitro keeps
growing at a remarkable pace. This, paralleled by a similar
growth in the available computation power, gives the biomo-
lecular modeling community a superb opportunity to revise
and advance the existing models of protein-DNA interac-
tions.

A protein binding to DNA often results in formation of a
DNA loop �3–5�. A segment of DNA folds into a loop when
either its ends get bound by the same protein molecule or
when the DNA gets wound around a large multi-protein ag-
gregate, such as the nucleosome �6�. DNA loop formation is
ubiquitous in both prokaryotic and eukaryotic cells; it plays a
central role in controlling the gene expression, as well as in
DNA recombination, replication, and packing inside the cells
�1–7�. Understanding the structure and dynamics of DNA
loops is therefore a prerequisite for studying the organization
and function of the genomes of living cells.

A complete model of an interaction between a protein and
a long DNA loop necessarily involves several spatial and

temporal scales �8–12�. On the one hand, the protein com-
plexes formed on the DNA typically do not exceed 100 Å in
size; the interactions on the interface between the protein and
the DNA, such as formation and breakage of hydrogen bonds
or rearrangements in the local protein and DNA structure,
occur on pico- to nanosecond time scales. These interactions
are typically captured in molecular dynamics �MD� simula-
tions of the all-atom models of the proteins bound to short
segments of DNA �8–10�. On the other hand, the DNA loops
induced by the bound proteins may measure hundreds of
nanometers in length; the characteristic motions of such
loops occur on micro- to millisecond time scales. The models
of the DNA loops typically involve a certain degree of
coarse-graining compared to the all-atom models �9–11,13�.
Many such models are based on the Kirchhoff theory of elas-
ticity �14�: they approximate the DNA helix by an elastic
rod/ribbon, sometimes carrying an electric charge
�9,10,13,15–24�.

It has been demonstrated �25,26� that the all-atom and
elastic rod models of DNA can be combined in a consistent
multi-scale description of a protein-DNA complex. The
structure of the DNA loop and the forces it exerts on the
protein clamp are obtained from the elastic rod model of the
loop that uses the boundary conditions resulting from the
all-atom structure of the DNA segments directly bound by
the protein. The subsequent all-atom MD simulations of the
protein complex with the bound segments use the thus-
computed forces, monitoring the resulting changes in the
protein structure and dynamics and constantly updating the
boundary conditions for the coarse-grained DNA model. The
elastic rod model can take into account the electric field of
the protein-DNA complex, and the all-atom simulation may
similarly include the forces resulting from the electric field
of the DNA loop. The multi-scale description yields a picture
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of the structure and dynamics of the protein-DNA complexes
which is presumably closer to reality than what is separately
predicted by either of the two models.

In the present paper, we describe in detail the Kirchhoff
rod model of DNA as used in the multi-scale modeling stud-
ies �25,26�. The classical Kirchhoff equations are extended in
order to describe such physical properties of DNA as the
electric charge �27–30�, intrinsic twist and bend �22,23,31�,
and the anisotropy of DNA bending �22,32–34�. To the best
of our knowledge, this work is the first attempt to tie all these
properties together in a single system of Kirchhoff equations
�35�. All parameters are considered to vary along the DNA
loop in order to account for variations in the DNA sequence.
A fast computational procedure for numerically solving the
extended Kirchhoff equations is developed on the basis of a
continuation algorithm �22,36�.

For a demonstration and analysis of the model, the elastic
rod solutions are obtained for a DNA loop induced by the lac
repressor, a celebrated E. coli protein that became a para-
digm of genetic regulation �1,4,37,38�. The boundary condi-
tions obtained from the protein structure �37� are used to
solve Kirchhoff equations for the loop lengths of 76 and 385
base pairs �bp� which the lac repressor induces in genomic
DNA �4,36,39�. The continuation algorithm yields two solu-
tions for the shorter loop and four solutions for the longer
loop; the solutions are used to extensively analyze such pa-
rameters of the model as the DNA bending anisotropy and
electric charge, and to derive recommendations for future
studies.

The manuscript is divided into five further sections. In
Sec. II, the extended Kirchhoff equations are derived. In Sec.
III, the lac repressor-DNA system is reviewed, the continua-
tion algorithm is discussed, and the elastic rod solutions for
the DNA loops folded by the lac repressor are obtained. In
Sec. IV, the effect of bending anisotropy on the structure and
energy of the DNA loops is analyzed. In Sec. V, adding the
electrostatic interaction terms into Kirchhoff equations is dis-

cussed, including the required changes to the numerical al-
gorithm, and the effect of electrostatics on the lac repressor
loops is analyzed. In Sec. VI, the elastic rod DNA model and
its applications in the multi-scale simulations are discussed.

II. THE ELASTIC ROD MODEL FOR DNA

Elastic rod theory �14,40,41� is a natural choice for mod-
eling a long linear polymer, such as DNA �9,10,20�. The
classical theory of elasticity describes the geometry of an
elastic rod �ribbon� in terms of its centerline r�s�
= (x�s� ,y�s� ,z�s�), a three-dimensional curve parametrized by
its arclength s, and a frame of three unit vectors d1�s�, d2�s�,
d3�s� associated with each cross section of the rod �Fig.
1�b��. In the case of DNA, the centerline of the rod follows
the axis of the DNA helix and Watson-Crick base pairs form
cross sections of the DNA “rod” �Figs. 1�a� and 1�d��. Below,
we derive the system of equations that describes the me-
chanical equilibrium conformations of such a rod. The equa-
tions of the classical theory �14,17,35,42,43� are modified in
order to account for the specific physical properties of DNA.

The centerline and the vectors d1−3 �45� describe the elas-
tic rod conformation in terms of six variables, as the compo-
nents of all the three vectors d1−3 can be expressed through
three Euler angles ��s� , ��s�, ��s�, which define the rotation
of the local coordinate frame �d1 ,d2 ,d3� relative to the lab
coordinate frame. Alternatively, one can use four Euler pa-
rameters q1�s�, q2�s�, q3�s�, q4�s� �22,42�, subject to the con-
straint

q1
2 + q2

2 + q3
2 + q4

2 = 1. �1�

The Euler parameters allow one to avoid the polar singulari-
ties inherent in the Euler angles �22,42� and are therefore
employed in this paper.

If the elastic rod is inextensible, which is the approxima-
tion considered in this paper, then the tangent to the center

FIG. 1. Elastic rod model of DNA. �a� The
elastic rod fitted into an all-atom structure of
DNA. �b� Parametrization of the elastic rod:
shown are the centerline r�s� and the intrinsic
local frame �d1 ,d2 ,d3�. �c� The principal normal
n�s�= r̈ / �r̈� and the binormal b�s�=d3�n vec-
tors, together with d3, form the natural �Frenet-
Serret� local frame for the 3D curve r�s�. �d� A
coordinate frame associated with a DNA base
pair. The vectors are defined according to the
general convention stated in �44� except that d1

and d2 are swapped.
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line ṙ coincides with the normal d3 �40,41�, resulting in an-
other geometric constraint,

ṙ�s� = d3�s� �2�

�the dot denotes the derivative with respect to s�. The
changes to the equations of elasticity due to using a model of
an extensible rod are described in Appendix A.

Other important parameters that describe the geometry of
the elastic rod are the curvature K�s� of the centerline and
twist ��s� of the rod around the centerline. The curvatures
and the twist describe the spatial rate of rotation of the elas-
tic rod cross section at each point s, as noted by the famous
Kirchhoff’s analogy between the sequence of the cross sec-
tions along the elastic rod and a motion of a rigid body
�14,40�. The following equations ensue:

ḋ1−3 = k � d1−3, k = �K1,K2,�� , �3�

where K1 and K2 are the principal components of the curva-
ture so that K=�K1

2+K2
2; the vector k is called the vector of

strains �40,41�. The principal components of the curvature
define the normal and binormal vectors:

n�s� = �K2/K�d1 − �K1/K�d2, �4�

b�s� = �K1/K�d1 + �K2/K�d2, �5�

which together with d3 form the natural �Frenet-Serret� local
frame for the elastic rod �Fig. 1�c��.

Using �3�, one can express the curvatures and the twist via
the Euler parameters q1−4 �see �46�, p. 16�:

K1 = 2�q4q̇1 + q3q̇2 − q2q̇3 − q1q̇4� , �6�

K2 = 2�− q3q̇1 + q4q̇2 + q1q̇3 − q2q̇4� , �7�

� = 2�q2q̇1 − q1q̇2 + q4q̇3 − q3q̇4� . �8�

Classically, a relaxed elastic rod �ribbon� is straight and
untwisted so that K=0, �=0. However, the relaxed shape of
DNA is a helix with a pitch H=36 Å, or 10.4 bp �1�. The
pitch is much smaller than the persistence length of DNA
bending �500 Å� or twisting �750 Å� �47�, so even a rela-
tively straight segment of DNA is tightly twisted. Moreover,
certain DNA sequences are known to be intrinsically curved
�20,23,32,33�. Therefore, we separate the curvature and the
twist into intrinsic and imposed components:

K1,2 = �1,2 + �1,2
° , � = � + � ° . �9�

The intrinsic twist and curvature of DNA is known to vary
between different sequences �23,32,33,48�, therefore the
equations below will be derived in the general form, using
arclength-dependent parameter-functions �1,2

° �s�, �°�s�.
If the elastic rod is forced into a shape different from that

of its relaxed state, then elastic forces N�s� and torques M�s�
develop inside the rod:

N�s� = 	
i=1

3

Nidi, M�s� = 	
i=1

3

Midi. �10�

The components N1 and N2 constitute the shear force Nsh

=�N1
2+N2

2; the component N3 is the force of tension �if N3
�0� or compression �if N3	0� at the cross section at the
point s. M1 and M2 are the bending moments, and M3 is the
twisting moment. In our model, we adopt the widely used
Bernoulli-Euler approximation �17,36,42� that linearly re-
lates the elastic torque to the imposed curvatures and twist:

M�s� = A1�1d1 + A2�2d2 + C�d3. �11�

The linear coefficients A1 and A2 are called the bending ri-
gidities of the elastic rod, and C is called the twisting rigidity
�47�. If A1=A2, we call the elastic rod isotropically bendable;
the cross section of such a rod must have a rotational sym-
metry of the fourth order �40,41�. The experimental data on
DNA elasticity are usually interpreted in terms of isotropi-
cally bendable DNA �49–52�. However, the atomic level
structure of the DNA cross section does not exhibit the re-
quired symmetry, implying anisotropic bending �cf. Figs.
1�a� and 1�d��. Hence, we derive our equations for the gen-
eral case of A1�A2 and vary the bending moduli in order to
study the effect of DNA bending anisotropy �Sec. IV�. Fur-
thermore, the DNA elastic moduli are known to depend on
its sequence �9,23,31,33,53�. Accordingly, Eq. �11� and all
the subsequent equations employ parameter-functions A1�s�,
A2�s�, and C�s� rather than constant parameters A1, A2, C.
The way to construct these parameter-functions for a DNA
loop of a given sequence is discussed in Appendix C.

There are, conceivably, external body forces f�s� and
torques g�s� acting upon the rod. In mechanical equilibrium,
the elastic forces and torques balance the external forces and
torques at every point s �17,22,24,36,43�:

Ṅ + ḟ = 0, �12�

Ṁ + ġ + ṙ � N = 0. �13�

The body forces and torques of the classical theory usually
result from gravity or from the weight of external bodies,
e.g., in the case of construction beams. In the case of DNA,
such forces are mainly of electrostatic nature and arise from
either the self-repulsion of the negatively charged DNA or
from interactions with biomolecular aggregates, such as pro-
tein molecules or lipid membranes. The treatment of electro-
static forces in our equations is described in Sec. V.

Equations �1�, �2�, and �11�–�13� form the basis of the
Kirchhoff theory of elastic rods. We simplify the equations
by first making all the variables dimensionless, i.e., defining

s̄ = s/l, x̄ = x/l, ȳ = y/l, z̄ = z/l , �14�

K̄1 = lK1, K̄2 = lK2, �̄ = l� , �15�


 = A1/C°, � = A2/C°, � = C/C°, �16�
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N̄1−3 = N1−3l2/C°, M̄1−3 = M1−3l/C°, �17�

where l is the length of the rod and C° is some reference
value of the twisting modulus, for example, the average
DNA value C°=3�10−19 erg cm. Second, we express the de-
rivatives q̇1−4 through K1, K2, �, and q1−4, using Eqs. �6�–�8�
and constraint �1� differentiated with respect to s. Third, we
eliminate the variables N1 and N2 using �13� and arrive at the
following system of differential equations of 13th order �54�:

�
�1
¨ � = �2��2

˙ �� − ���K2
˙ � − ��2�̇ + 
�1�2 − �K1��

+ K1N3 + �ġ2 − ḟ2 − g̈1, �18�

���2
¨ � = − �2
�1�˙ � + ���K1

˙ � + 
�1�̇ + ��2�2 − �K2��

+ K2N3 − �ġ1 + ḟ1 − g̈2, �19�

���̇� = 
�1K2 − �K1�2 − ġ3, �20�

Ṅ3 = − �
�1
˙ �K1 − ���2

˙ �K2 − ���̇�� − g1K1 − g2K2

− g3� − ḟ3, �21�

q̇1 = 1
2 �K1q4 − K2q3 + �q2� , �22�

q̇2 = 1
2 �K1q3 + K2q4 − �q1� , �23�

q̇3 = 1
2 �− K1q2 + K2q1 + �q4� , �24�

q̇4 = 1
2 �− K1q1 − K2q2 − �q3� , �25�

ẋ = 2�q1q3 + q2q4� , �26�

ẏ = 2�q2q3 − q1q4� , �27�

ż = − q1
2 − q2

2 + q3
2 + q4

2. �28�

These equations, similar to those used by others
�17,22,36,42,55� but derived here in a more general form,
can be solved numerically or, in certain cases, analytically
�e.g., for 
=�, f=0, g=0 �17,43��. A solution to the system
consists of 13 functions: r�s�, q1–4�s�, N�s�, and M�s� �the
latter directly obtainable from k�s� by virtue of �11��. These
functions describe the geometry of the elastic rod and the
distribution of stress and torques along it. In the case of a
DNA loop with the ends bound to a single protein or a multi-
protein aggregate, the positions and orientations of the ends
are presumably known; therefore, one can deduce r�0�, r�1�,
q1–4�0�, q1–4�1�, e.g., as explained in the next section, and
solve the system �18�–�28� as a boundary value problem
�BVP�. The obtained—generally, multiple—solutions will
represent the set of equilibrium conformations of the loop
achievable under the given boundary conditions. The forces
N�0�, −N�1� and torques M�0�, −M�1� correspond to the
forces and torques which the DNA loop exerts upon the pro-
tein clamp at each end. These are the forces and torques that
are sought in the multi-scale simulation method �25� and

included into the MD simulation of a protein-DNA complex.
Which of the multiple solutions to the system �18�–�28� is

to be used in the multi-scale simulation can be determined by
an energy criterion, assuming that the ensemble of the DNA
loop conformations is at thermodynamic equilibrium. The
dimensionless elastic energy of each solution is computed,
according to the Bernoulli-Euler approximation �11�, as the
quadratic functional of the curvatures and twist

U = 

0

1 �
�1
2

2
+

��2
2

2
+

��2

2
�ds . �29�

This functional may further include the electrostatic interac-
tion terms �as described in Sec. V� and the terms due to the
interactions of the DNA loop with other biomolecules �as
expressed through the forces f and torques g�, in case those
terms are not negligible. The solution with the lowest energy
shall have the highest weight in the thermodynamic en-
semble and the forces/torques derived from that are to be
used in the multi-scale simulation. However, if multiple con-
formations of comparable energy �within 1–2 kT from the
lowest one� are found, then their effect on the protein struc-
ture shall be studied separately, because the exchange time
between the different loop conformations is much larger than
the typical times of protein structural dynamics studied by
MD.

The system �18�–�28� describes the elastic rod model of
DNA in the most general terms. Not all of the options pro-
vided by such a model will be explored in the demonstration
study presented below; most times the equations will be sim-
plified in one way or another. The unexplored possibilities
and situations when the various options might become rel-
evant will be discussed in Sec. VI.

III. ELASTIC ROD SOLUTIONS FOR THE DNA LOOP
CLAMPED BY THE lac REPRESSOR

In this section, we first describe our trial system, the com-
plex of the lac repressor protein with a DNA loop. Then the
DNA loop involved in the system is used to illustrate the
numeric algorithm for solving the equations of elasticity
�18�–�28�. Finally, the different solutions obtained for the
DNA loop are discussed.

A. The DNA complex with the lac repressor

In order to explore the extended Kirchhoff equations, we
build an elastic rod model of the DNA loop induced in the E.
coli chromosome by the lac repressor protein. The lac re-
pressor functions as a switch that shuts down the lactose
�lac� operon, a set of E. coli genes the study of which laid
one of the cornerstones of modern molecular biology
�1,4,37,38�. The genes code for proteins that are responsible
for lactose digestion by the bacterium; they are shut down by
the lac repressor when lactose is not present in the environ-
ment. When lactose is present, the molecules of it bind inside
the lac repressor and deactivate the protein, thereby inducing
the expression of the lac operon �Figs. 2�a� and 2�b��.

The lac repressor consists of two DNA-binding “hands,”
seen in the crystal structure of the protein �37� �Fig. 2�c��.
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Each “hand” recognizes a specific 21 bp long sequence of
DNA, called the operator site. The lac repressor binds to two
operator sites and causes the DNA connecting those sites to
fold into a loop. There are three operator sites for the lac
repressor in the E. coli genome: O1, O2, and O3, all three are
necessary for the maximum repression of the lac operon
�4,5,39�. One hand of the lac repressor must bind to O1 and

the other to either O2 or O3; therefore, the resulting DNA
loop has a length of either 385 bp �O1-O2� or 76 bp �O1-
O3� �Fig. 2�b��. While the long loop is the easier to form, the
short loop contains the lac operon promoter, and the forma-
tion of this loop is very disruptive for the expression of the
lac operon.

While the structure of the lac repressor itself is known, it

FIG. 2. �a� The expressed lac operon. The biomolecules involved are �1� lac repressor �shown deactivated by four bound lactose
molecules�, �2� the DNA of E. coli, �3� RNA polymerase �shown first bound to the promoter and then transcribing the lac operon genes�, and
�4� mRNA �shown as being transcribed by the RNA polymerase�. The flag shows the “+1” base pair of the DNA where the genes of the lac
operon begin. The operator sites, marked as O1−3, are shown as shaded rectangles; the position of each operator’s central base pair is shown
in brackets. �b� The repressed lac operon. The lac repressor is shown binding two operator sites, either O1 and O3 or O1 and O2, and the
RNA polymerase is shown released from the operon. The end-to-end length of the DNA loop formed in each case is indicated. �c� The crystal
structure of the lac repressor �37�. The DNA loop, missing in the crystal structure and shown here in light color, corresponds to an all-atom
model fitted to one of the two elastic rod structures predicted for the 76 bp loop �see �18� and Sec. III B�. Small pieces of the crystal structure
are omitted from the figure for clarity. �d� Same as �c� for the 385 bp loop; the all-atom DNA model is fitted to one of the four possible
structures of the loop �see Sec. III C and Fig. 6�.
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would hardly be possible to crystallize the induced DNA
loops, merely because of their size, and thus to study both
their structure and their effect on the lac repressor. The crys-
tal structure �37� of the lac repressor complex with DNA
includes only two disjoint operator segments bound to the
protein. Bending a continuous piece of DNA into a loop puts
the lac repressor under a stress that was shown to change the
protein structure �26,56�. The elastic rod model provides a
perfect tool for predicting the structure of the missing loops
and the forces of protein-DNA interaction, and for the sub-
sequent studying of the effect of the DNA loops on the pro-
tein structure by means of a multi-scale simulation �25,26�.

B. Solving the equations of elasticity for the 76 bp long
promoter loop O1-O3

The structure of the missing loops is built by numerically
solving Eqs. �18�–�28� with the boundary conditions ob-
tained from the crystal structure �37� of the lac repressor-
DNA complex. The terminal �57� base pairs of the DNA
segments bound to the lac repressor in the structure �37� are
interpreted as the cross sections of the loop at the beginning
and at the end, and orthogonal frames are fitted to those base
pairs, as illustrated in Fig. 1�d�. The positions of the centers
of those frames and their orientations relative to the lab co-
ordinate system �LCS� provide 14 boundary conditions: r�0�,
r�1�, q1–4�0�, q1–4�1�. In order to match the 13th order of the
system �18�–�28�, a boundary condition for one of the qi’s is
dropped; it will be automatically satisfied because the iden-
tity �1� is included into the equations.

The iterative continuation algorithm used for solving the
BVP is the same as that used in our previous work �18� �with
some modification when the electrostatic self-repulsion is in-
cluded into the equations, as described in Sec. V�. The solu-
tion to the problem is constructed in a series of iteration
cycles. The cycles start with a certain set of boundary con-
ditions and model parameters for which an exact solution is
known. Then the boundary conditions and model parameters
are changed towards the desired values during the iteration
cycles; only a certain subset of parameters is normally
changed during each cycle, e.g., only r�1� or only 
 /�. Dur-
ing the cycle, the chosen parameters evolve towards the de-
sired values through a number of iteration steps; the number
of steps is chosen depending on the sensitivity of the prob-
lem to the parameters being modified. At each step, the so-
lution found on the previous step is used as an initial guess;
with a proper choice of the iteration step, the two consecu-
tive solutions are close to each other, which guarantees the
convergence of the numerical BVP solver. For the latter, a
classical software, COLNEW �58�, is employed. COLNEW
uses a damped quasi-Newton method to construct the solu-
tion to the problem as a set of collocating splines.

The known exact solution, from which the iteration cycles
started, was chosen to be a circular closed �r�0�=r�1�� elas-
tic loop with zero intrinsic curvature �1,2

° , constant intrinsic
twist �° =34.6 deg/bp �the average value for classical
B-form DNA �1��, constant elastic moduli 
=�= 1

2 , and zero
electrostatic charge �QDNA=0� �59�. This solution is shown
in Fig. 3�a�; the explicit form of the solution can be found in

�60�. The loop started �and ended� at the center of the termi-
nal base pair of one of the protein-bound DNA segments.
The coordinate frame associated with that base pair, i.e., with
the loop cross section at s=0, was chosen as the LCS. The
orientation of the plane of the loop was determined by a
single parameter �°, the angle between the plane of the loop
and the x axis of the LCS.

In the first iteration cycle, the value of r�1� was changed,
moving the s=1 end of the loop by 45 Å to its presumed
location at the beginning of the second DNA segment �Fig.
3�b��. In the second iteration cycle, the cross section of the
elastic rod at the s=1 end was rotated to satisfy the boundary
conditions for q1–4�1� �Figs. 3�c� and 3�d��. The rotation con-
sisted in simultaneously turning the normal d3 of the cross
section to coincide with the normal to the terminal base pair
and rotating the cross section around the normal in order to
align the vectors d1 and d2 with the axes of the base pair.

FIG. 3. Evolution of the elastic rod structure during the solution
of the BVP for the short loop. �a� The initial solution: a closed
circular loop. �b� The solution after the first iteration cycle. �c�, �d�
The solutions after the second iteration cycle, for the clockwise �c�
and counter-clockwise �d� rotation of the s=1 end. �e�, �f� The
solutions after the third iteration cycle; the previous solutions are
shown in light color; the views from the top include the forces that
the DNA loop exerts on the DNA segments bound to the lac repres-
sor. The protein-bound DNA segments from the lac repressor crys-
tal structure are shown for reference only, as they played no role
during the iteration cycles except for providing the boundary
conditions.
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Depending on the direction of the rotation, two different
solutions to the problem arise. Rotating the s=1 end clock-
wise results in the solution shown in Fig. 3�c�. Rotating
the end counter-clockwise results in the solution shown in
Fig. 3�d�. The former solution is underwound by �=
−1.4 deg/bp on average and the latter solution is overwound
by �=1.6 deg/bp on average; accordingly, the solutions will
hereafter be referred to as “U” and “O.” The two solutions
may be transformed into each other through an additional
iteration cycle, namely, turning the s=1 end around its nor-
mal by 2. Continuous rotation of the s=1 end results in
switching between the two solutions. Switching from the U
to the O solution is accompanied by a self-crossing of the
DNA loop, not prevented in the model at this point. Topo-
logically, rotating the end by a whole turn clockwise in-
creases the linking number �15,16,20,21� of the loop by 2
and a self-crossing reduces the linking by 4; therefore, two
full turns are canceled by one self-crossing, and the original
solution gets restored after two turns.

In the third iteration cycle, the bending moduli 
 and �
�so far, kept equal to each other� were changed from 1

2 to 2
3 ,

the experimentally measured ratio between DNA bending
and twisting moduli �47�. The resulting increase in the bend-
ing rigidity somewhat changed the geometry of the U and O
solutions �Figs. 3�e� and 3�f�� and increased the unwinding/
overwinding to −1.6 and 2.0 deg/bp, respectively. The
change in � has a clear topological implication: the defor-
mation of the looped DNA is distributed between the writhe
�bending� of the centerline and the unwinding/overwinding
of the DNA helix. When the bending becomes energetically
more costly, the centerline of the loop straightens up, on
average, and the deformation shifts towards a bigger twist.

Notably, two more solutions may result from the de-
scribed iteration procedure, depending on the orientation �°
of the initial simplified circular loop �Fig. 4�. However, for
the 76 bp loop these solutions are not acceptable, because the
centerlines of the corresponding DNA loops would have to
run right through the structure of the lac repressor �cf. Figs.
4�c�, 4�d�, and 2�c��.

Therefore, only the two former solutions to the problem
are acceptable in the case of the 76 bp loop. The solutions
obtained after the third iteration cycle become our first-
approximation answer to what the structure of the DNA loop

created by the lac repressor must be. The solutions are por-
trayed in Figs. 3�e� and 3�f�, and the profiles of their curva-
ture, twist, and elastic energy density are shown in Fig. 5
�left column�.

FIG. 4. Extraneous solutions to the BVP obtained for a different
orientation �° of the initial circular loop. The initial loop from Fig.
3 �a� is shown in panel �a� in light color.

FIG. 5. Distribution of curvature, twist, and energy in the elastic
rod BVP solutions �U—top panel, O—bottom panel� for the 76 bp
DNA loop. In each panel, left column: the isotropic solution with

=�=2/3; center column: the anisotropic solution with 
=4/15,
�=16/15; right column: the anisotropic solution with electrostatics,
for an ionic strength of 10 mM.
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The U solution forms an almost planar loop, its plane
being roughly perpendicular to the protein-bound DNA seg-
ments �Fig. 3�e��. The shape of the loop resembles a semi-
circle sitting on two relatively straight segments connected
by short curved sections to the lac repressor-bound DNA.
Accordingly, the curvature of the loop is highest in the
middle and at the ends and drops in between �Fig. 5�. The
average curvature of this loop is 3.7 deg/bp; the highest cur-
vature, achieved in the middle of the loop, is around
6 deg/bp. Since 
=�, the unwinding is constant and the
energy density profile simply follows the curvature plot. The
total energy of the loop is 33.0 kT, of which 26.8 kT are
accounted for by bending and 6.2 kT by twisting. The stress
of the loop pushes the ends of the protein-bound DNA seg-
ments �and, consequently, the lac repressor headgroups�
away from each other with a force of about 10.5 pN �Fig.
3�e��.

The O solution leaves and enters the protein-bound DNA
segments in almost straight lines, connected by a semicircu-
lar coil of about the same curvature as that of the U solution,
not, however, confined to any plane �Fig. 3�f��. The average
curvature equals 3.6 deg/bp. The energy of this loop is
higher than that of the U loop: 38.2 kT, distributed between
bending and twisting as 28.5 and 9.7 kT, respectively. The
forces of the loop interaction with the protein-bound DNA
segments equal 9.2 pN and are pulling the ends of each seg-
ment towards the other segment �Fig. 3�f��.

Since the energy of the U loop is 5 kT lower than that of
the O loop, one could conclude that this form of the loop
should dominate under conditions of thermodynamic equilib-
rium. Yet, both energies are too high: the estimate of the
energy of the 76 bp loop from the experimental data �61� is
approximately 20 kT at high salt concentration �see Appen-
dix B�. Therefore, one cannot at this point draw any conclu-
sion as to which loop structure prevails, and further improve-
ments to the model are needed, such as those described in
Secs. IV and V.

C. Solutions for the 385 bp long O1-O2 loop

Using the same algorithm, the BVP was solved for the
385 bp loop. Similarly, four solutions were obtained �cf.
Figs. 3�e�, 3�f�, 4�c�, and 4�d��. With the longer loop, the
previously unacceptable solutions are running around the lac
repressor rather than through it and, therefore, are accept-
able. All four solutions �denoted as U, U�, O, O�� are shown
in Fig. 6. The solutions U and U� are underwound, O and O�
are overwound. The geometric and energetic parameters of
the four solutions are shown in Table I.

The elastic energy and the average curvature and twist of
the longer loops are smaller than those of the shorter loops of
the corresponding topology. That is not surprising. The cur-
vature and the twist decrease because the same amount of
topological change �linking number� has to be distributed
over the larger length of the loop. As the energy density is
proportional to the square of the local curvature/twist �cf.
�29��, the integral energy is roughly inversely proportional to
the length of the loop.

More interestingly, it is the U loop again that has the
lowest energy and, prima facie, should be predominant under
thermodynamic equilibrium conditions. The formerly extra-
neous U� and O� solutions clearly have such high energies
that they should practically not be represented in the thermo-
dynamical ensemble of the loop structures and could be
safely discounted for the 385 bp loop as well.

Yet again, the conclusions, based on the obtained energy
values, shall be postponed until the present elastic rod model
is further refined.

IV. EFFECTS OF ANISOTROPIC BENDABILITY

As the first step towards refining our model, a closer look
is taken into the DNA bending moduli A1 and A2 �or 
 and �
�16��. Having started with the model of the isotropically
bendable DNA, i.e., the one with 
=�, we consider in this
section the effect of anisotropic bendability 
�� on the
conformation and energy of the elastic rod.

A. Anisotropic moduli of DNA bending

Until recently, the experimental data on DNA bending
have been interpreted in terms of a single effective bending
modulus A �49–52�, and many theoretical studies used

TABLE I. Geometric and energetic properties of the four solu-
tions of the BVP problem for the 385 bp long DNA loop, in the case

=�=2/3.

Solution
��

�deg/bp�
��

�deg/bp�
�max

�deg/bp�
U

�kT� U� /U U� /U

U −0.24 0.73 1.31 6.2 0.88 0.12

O 0.40 0.80 1.49 8.7 0.76 0.24

U� −0.33 1.21 1.59 14.4 0.90 0.10

O� 0.42 1.23 1.58 15.5 0.86 0.14

FIG. 6. Four solutions of the BVP problem for the 385 bp long
DNA loop. Underwound solutions are marked by the letter “U,”
overwound ones by “O.”
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the approximation of isotropically bendable DNA
�13,15,17,19,21,22,29,42,55,62�. Such an approximation
simplifies the equations of elasticity and the resulting DNA
geometry, e.g., by causing the unwinding/overwinding � to
be constant along the DNA loop whenever the external
torque g3 is constant �cf. Eq. �20� and Fig. 5, left column�.

However, the atomic structure of DNA helix exhibits two
sugar-phosphate backbone strands separated by two grooves
�Fig. 1�a��; clearly, bending towards the grooves �roughly,
around d1� should cost less energy than bending over the
backbone �roughly, around d2�. Moreover, the bending prop-
erties of DNA are known to strongly depend on its sequence
�23,31,33,53�. Therefore, we vary the two bending moduli
A1�A2 independently and study the effect of bending aniso-
tropy on the structure and energy of the DNA loops �63�.

The effective bending modulus A is related to A1 and A2
through a classical formula �16,23,34� that implies the inde-
pendence of thermal fluctuations in the two principal bend-
ing directions and, consequently, the equidistribution of en-
ergy between those fluctuations:

1

A
=

1

2
� 1

A1
+

1

A2
� . �30�

This relationship might be different in the case of a non-
negligible coupling between the bending fluctuations, e.g.,
due to the high intrinsic twist of DNA �60�, and is further
complicated when the effective modulus is measured for
DNA with nontrivial intrinsic geometry �23�; such cases will
not be considered in the present work.

In order to derive 
 and � from �30� one needs more
information than the single experimental value of A /C
=2/3 �47�. For example, one may demand to know the ratio
�=A1 /A2=
 /�. However, this ratio is less certain than the
A /C ratio. In �34�, the value of �=1/4 was suggested as
both being close to experimental data and reproducing well
the DNA persistence length in Monte Carlo simulations. But
other estimates of � result from comparison of the oscilla-
tions of roll and tilt �the angles of DNA bending in the two
principal directions� �32�, which are directly related to 
 and
�. The dependence of both � and A /C on the DNA sequence
adds even more uncertainty as to what their effective values
for a specific loop should be.

For these reasons, we choose to study the effect of bend-
ing anisotropy on the structure and energy of the lac repres-
sor loops in a broad range of parameters �=
 /� and A /C
=2
� / �
+��. The loops generated for a specific pair of val-

ues 
=4/15 and �=16/15 ��=1/4� are selected for a de-
tailed structural and energetic analysis.

B. Structure of the 76 bp long U and O loops
in the case of �=1/4

Let us first consider the short U and O loops for the se-
lected moduli with �=1/4. The structures of the new loops
were built in the course of another iteration cycle, during
which the previously generated isotropic structures with 

=�=2/3 were transformed by simultaneously changing the
bending moduli 
 and � towards the desired values of 4 /15
and 16/15, respectively.

The structures of the thus constructed loops are shown in
Fig. 7. As one can see, the U loop is not much different from
the one in the isotropic case, the root-mean square deviation
�rmsd� �64� between the two being only 1.1 h. However, the
O loop differs from the isotropic case more significantly, by
rmsd of 4.6 h; the loop bends over itself forming a point of
near self-contact similarly to the isotropic O loop with 

=�=1/2 �cf. Fig. 3�f��. The energy of the new U loop equals
23.3 kT, distributed between bending and twisting as 18.9
and 4.4 kT, respectively. The energy of the new O loop
equals 26.5 kT, distributed between the bending and twisting
as 22.2 and 4.3 kT, respectively. The elastic forces acting at
the loop ends equal 7.9 pN for the U loop and 7.2 pN for the
O loop.

The distribution of curvature and twist in the anisotropic
loops is shown in Fig. 5 �central column�. The previously
smooth profiles acquire a seesaw pattern, observed in other
studies, too �23,33�. This happens because the elastic rod—
now better called elastic ribbon—twists around the centerline
with a high frequency due to its high intrinsic twist. Accord-
ingly, the vectors d1 and d2 get in turn aligned with the
principal normal n that points towards the main bending di-
rection �cf. Fig. 1�c��. In DNA terms, the double helix suc-
cessively faces the main bending direction with the grooves
and the backbone �cf. Figs. 1�a� and 1�b��.

When the vector d2 is aligned with n, all bending occurs
towards the grooves, resulting in the principal curvatures
�K1�= �K�, K2=0, and the local energy density dU�=
K1

2 /2.
After a half-period of intrinsic twist, d1 gets aligned with n
and all bending occurs towards the backbone, resulting in
K1=0, �K2�= �K�, and dU�=�K2

2 /2. Since 
	�, bending to-
wards d1 results in higher energetic penalty and elastic
torques than bending towards d2. Therefore, the sections of
the rod facing the main bending direction with the backbone
�d1� become less bent, and those facing it with the grooves
�d2� become more bent, resulting in the observed oscillations
of the curvature and twist �Fig. 5�. The structure of the rod
becomes an intermediate between that of a smoothly bent
loop and that of a chain of straight links, corresponding to
the limits �=1 and �=0. The sections where the rod is fac-
ing the main bending direction with d2 play the role of “soft
joints” where most of the bending is localized.

The local twist � of the anisotropic loops also displays
oscillations �Fig. 5�. When all the bending occurs towards d1,
the twist slightly increases, winding the “rigid face” away
from the main bending direction. When the bending occurs

FIG. 7. Changes in the predicted structure of the elastic loop due
to the bending anisotropy. �a� The underwound �U� solution. �b� The
overwound �O� solution. Structures obtained for 
=�=2/3 are
shown in light color; structures obtained for 
=4/15, �=16/15 are
shown in dark color.
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towards d2, the twist slightly decreases, extending the expo-
sure of the “soft face” to the main bending. The oscillations
of the twist cannot, however, be too large because they inflict
a certain energetic penalty as well.

C. Changes to the 76 bp loops in the broad range
of parameters � and A /C

From the described specific case of �=1/4, we proceeded
to studying the elastic rod conformations over a broad range

FIG. 8. Energy and geometry of the 76 bp loops in the broad range of elastic moduli 
 and �. The plots show the dependencies using
coordinates �=
 /� and A /C=2
� / �
+�� �30�. �a� 3D plots for the elastic energy U of the U loop, the average unwinding � of the loop,
and the rmsd of the loop centerline from that in the isotropic case �=1. The rmsd values are measured in DNA helical steps h=3.4 Å. To
present the best view, the plots for rmsd and � are shown from a different viewpoint than that for U. The inset shows the contour line for
U=20 kT, which is the DNA looping energy estimated from experiment �61�. �b� Cross sections of the maps in �a� for the fixed values of
A /C=2/3 �top row� and �=1 �bottom row�. The plots illustrate the behavior of the loop structure in response to changing the rigidity �A /C�
and bending anisotropy ��� of the loop. �c� Snapshots of the loop structures for the stated values of A /C. The darkly colored loops
correspond to �=0.01, and the lightly colored loops to �=100. For the U solution, the two loop structures practically overlap for all A /C
values. �d�–�f� Same as �a�–�c� for the O solution. Note the more pronounced dependence of the O loop structure and energy on the bending
anisotropy �.
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of parameters A /C and � �or 
 and ��. A /C was varied
between 1/20 and 20, and � between 10−2 and 102. In prin-
ciple, such range is too broad as neither the DNA rigidity
A /C significantly deviates from 1, according to all existing
estimates �23,31,33,49–51,65�, nor is � likely to deviate
from 1 by two orders of magnitude as the oscillations of
DNA roll and tilt are normally of the same order �32�. The
values of ��1 are especially unlikely as the DNA bending
towards the grooves should clearly take less energy than
bending towards the backbone �cf. Fig. 1�a��. Yet, the broad
range of parameters was studied in regard to the behavior of
twisted elastic rods in general.

The parameters were changed in two nested iteration
cycles starting from the isotropic solutions with 
=�=2/3.
A /C was changed in the first cycle and � in the second,
nested cycle. The moduli 
 and � were then computed on
each step according to the formulas above, and the new so-
lutions were generated. The results of the computations are
presented in Fig. 8.

The energy U of the elastic loops grows roughly linearly
with the bending rigidity A /C. The changed A /C also means
that the relative energetic cost of bending and twisting
changes; as a result, the elastic loop changes its shape so as
to optimally distribute the deformation between bending and
twisting. When A /C is increasing, the average curvature of
the loop decreases and the average unwinding/overwinding
� increases �Fig. 8�. Conversely, when A /C is decreasing,
the costly twisting falls to zero and the rod centerline be-
comes more significantly bent at every point. Yet, the rod
cannot straighten itself to a line at high A /C, nor can ��� fall
lower than zero at low A /C; therefore, at some point the
structure of the rod approaches an asymptotic shape and the
average unwinding/overwinding and the rmsd from the ini-
tial structure become nearly constant �cf. the plots for �=1
in Figs. 8�b� and 8�e��. A similar effect has been observed in
the studies of the bending anisotropy of a Möbius band �36�.

Interestingly, the asymptotic shapes of the U and O loops
are almost identical for the high bending rigidity �cf. Figs.
8�c� and 8�f� for A /C=20�; the corresponding shape of the
elastic loop achieves the least possible bending for the given
boundary conditions. However, the twist of the two
asymptotic loops is different: the total twist of the O solution

is 2 less than that of the U solution. The energy difference
between the asymptotic U and O loops is about 7 kT, arising
mainly from the difference in the twisting energy.

Introducing bending anisotropy of the elastic rod causes
the local curvature and twist to develop seesaw profiles simi-
lar to those described above, but otherwise does not have a
significant effect on the loop structure and energy. Going
from �=1 to �=102/10−2 changes the total energy of the
loop by only a few percent of its value �Figs. 8�b� and 8�e��.
The rmsd from the isotropic structures of the same rigidity
never exceeded 1 h. The absolute value of the average twist
increases �for the U loop� or decreases �for the O loop� by at
most 10%. A more pronounced effect could be obtained if
the coupling between the bending fluctuations in the two
principal directions were taken into account and a relation
between the effective rigidity A /C and the elastic moduli 

and � different from �30� were used �60�.

The experimentally measured energy of DNA looping by
the lac repressor equals 20 kT �61�. This value can be repro-
duced in our computations for different sets of parameters
A /C and �, as can be seen from the contours on the �
-A /C plane that correspond to the cross sections of the 3D
maps of the elastic energy for U=20 kT �Figs. 8�a� and
8�d��. Due to the observed small effect of the bending aniso-
tropy on the energy of the elastic loops, the contours fit into
a narrow A /C range near the values of 0.31–0.35, which is
approximately one-half of the experimentally measured
bending rigidity. Yet one has to be cautious when directly
comparing the computed and observed energies since the
structure of the lac repressor �and, therefore, the boundary
conditions of the problem� might change under the stress of
the bent DNA loop �18,25,26,56�. A multi-scale simulation in
which the lac repressor structure would be allowed to change
and to relax the DNA loop �25,26� is better suited for param-
etrizing the DNA elasticity moduli than the present simplistic
calculations.

Yet, certain conclusions about the lac repressor loops can
be made despite uncertainty about the values of 
 and � �or
� and A /C�. The difference in the energy between the U and
O loops, shown in Fig. 9, exceeds 1 kT over a wide range of

 and � values, and in a significant part of the range even
exceeds 3 kT. Therefore, it can be safely concluded that,

FIG. 9. �a� Dependence of the elastic energy difference �U=UO−UU between O and U solutions, plotted in coordinates �=
 /� and

�= �
+�� /2. �b� Contours of the plot in �a� for �U values of 1 ,2 , . . . ,7 kT.
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under thermal equilibrium, the DNA loop formed by the lac
repressor should preferably have the shape of the U solution.
Incidentally, the shape of the U loop varies less for different

 and � �Figs. 8�c� and 8�f�� and therefore can with more
certainty be used to determine such global geometric param-
eters of the loop as, for example, the radius of gyration or an
average protein-DNA distance.

A notable feature of the O solution is a point of near
self-contact �Figs. 3, 7, and 8�f��, which becomes closer as
the bending rigidity of the loop decreases �Fig. 8�f��. If elec-
trostatics were taken into account at this moment, this near
self-contact would inflict a strong energetic penalty due to
the self-repulsion of the negatively charged DNA. This hap-
pens indeed, as demonstrated in the next section. Thus, the
open shape of the U loop lacking any self-contact becomes
an additional argument in favor of predominance of the U
loop in the ensemble of loop structures folded by the real lac
repressor.

D. Structure of the 385 bp loops for the anisotropic values
of � and A /C

The effect of bending anisotropy on the structure and en-
ergy of the 385 bp loops is similar to that seen above for the
76 bp loops. The distributions of curvature, twist, and energy
density along the four solutions developed oscillatory pat-
terns, similar to those shown in Fig. 5; the bending concen-
trated in the “soft joints.” For �=1/4, the solutions became
more bent and less twisted on the average, as the data in
Table II show �cf. Table I�. The U solution was the one to
undergo the least change from its isotropic shape, while the
solutions O and O� were those that changed the most.

Over the broad range of parameters 
 and �, the four long
loops showed the same tendencies as the two short loops.
The bending anisotropy introduced using �30� did not have a
significant effect. Changes in the rod rigidity eventually
brought the loops to asymptotic states. The asymptotic states
for the loops with a small A /C ratio were strongly bent con-
formations with practically zero unwinding/overwinding,
where the twisting energy was of the same order as the small
bending energy. The asymptotic states for the loops with the
large A /C ratio were the conformations with the least pos-
sible bending, where the twist achieved the highest possible
value to compensate for the energetically costly bending, yet
the bending still accounted for most of the elastic energy.

The underwound U solution was again the one to have the
lowest elastic energy among the four solutions throughout
the whole studied range of 
 and � values. The maps of the
energy difference between U and the other three solutions are
shown in Fig. 10. The energy of the O solution does not
normally differ from that of the U solution by more than
several kT; therefore, the O solution should contribute to a
small extent to the thermodynamic ensemble of the loop
structures when the lac repressor binds a 385 bp DNA loop.
In contrast, the energies of the U� and O� loops are consis-
tently 2–2.5 times larger than the energy of the U loop; the
energy difference is small only for unlikely values of 
 and
�. Therefore, one can safely conclude that these two loops,
even though uninhibited by steric overlap with the lac re-
pressor, are still extraneous solutions, as in the case of the 76
bp loop, and may be excluded from any multi-scale compu-
tation relying on the properties of the thermodynamic en-
semble of the 385 bp loop conformations.

V. ELECTROSTATIC EFFECTS

The last but, perhaps, the most important extension of the
classic theory employed here consists in “charging” the mod-
eled DNA molecule. The phosphate groups of a real DNA
carry a substantial electric charge, −20.8e per helical turn,
that significantly influences the conformational properties of
DNA �20,27–29,66�. The DNA experiences strong self-
repulsion that stiffens the double helix and increases the dis-
tance of separation at the points of near self-contact �67�.
Also, all electrostatically charged objects in the vicinity of a
DNA, such as amino acids of a bound protein or lipids of a
nearby nuclear membrane, interact with the DNA charges
and influence the DNA conformations. Below, we describe
our model of the electrostatic properties of DNA and the
effects of electrostatics on the conformation of the lac re-
pressor DNA loops.

A. Changes to the equations of elasticity due to electrostatics

The electrostatic interactions of DNA with itself and any
surrounding charges are introduced through body forces f,
such that

ḟ�s� = ��s�E„r�s�… , �31�

where E is the electric field at the point r�s� and ��s� is the
density of DNA electric charge at the point s. The present
simplified treatment places the DNA charges on the center-
line, as was also done in other studies �27,42�.

The charge density ��s� is modeled as a smooth differen-
tiable function with relatively sharp maxima between the
DNA base pairs, where the phosphate charges are located.
The chosen �dimensionless� function

��s� = 8
3QDNA sin4�NDNAs� �32�

is somewhat arbitrary, but specifics are unlikely to signifi-
cantly influence the results of our computations, as discussed

TABLE II. Geometric and energetic properties of the four solu-
tions for the 385 bp long DNA loop, in the case of �=1/4 �

=4/15,�=16/15�. The rmsd values are computed with respect to
the corresponding loops obtained for 
=�=2/3.

Solution
��

�deg/bp�
��

�deg/bp�
�max

�deg/bp�
U

�kT�
rmsd
�h�

U −0.20 0.82 2.16 4.2 3.3

O 0.26 0.96 2.69 6.0 9.1

U� −0.29 1.34 2.61 9.7 4.7

O� 0.34 1.38 2.66 10.5 7.6
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below. NDNA denotes the number of base pairs in the mod-
eled DNA loop �which is assumed to begin and end with a
base pair� and QDNA denotes the total charge of the DNA
loop. That charge is reduced from its regular value of 2e per
base pair due to Manning counterion condensation around
the phosphates �66�: QDNA=2e�NDNA. Here, we use the
value of �=0.25, valid for a broad range of salt concentra-
tions �66�.

The electric field E is composed of the field of external
electric charges, not associated with the modeled DNA loop,
and from the field of the loop itself �Fig. 11�. E is computed
using the Debye screening formula

E„r�s�… =
1

4��°
�	

i

qi �
exp�− ��ri�s��/��

��ri�s��

+ 2e�	
j

� �
exp�− ��r j�s��/��

��r j�s�� � , �33�

where �ri�s�=r�s�−Ri, �r j�s�=r�s�−r�sj�, �=3 Å/�cs is
the radius of Debye screening in an aqueous solution of
monovalent ionic strength cs at 25 °C �66�, and �=80 is the
dielectric permittivity of water.

The first term in Eq. �33� represents the DNA interaction
with external charges qi located at the points Ri; the sum

FIG. 10. Elastic energy difference between U and �a� O, �b� U�, and �c� O� solutions for the 385 bp long DNA loop. 3D plots of the
energy difference in the coordinates �=
 /� and 
�= �
+�� /2 are shown on the left, and contour maps of the 3D plots for the �U values
of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 kT are shown on the right.
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runs over all those charges. The second term represents the
self-repulsion of the DNA loop and involves a sum over all
the maxima of the charge density ��s�, where the DNA phos-
phates, i.e., charges of 2e�, are located. This sum approxi-
mates an integral over the charged elastic rod. Computing
such an integral would be more consistent with the continu-
ous ��s�; however, the suggested discretization is rather ac-
curate, as shown below, and reduces significantly the cost of
the computation.

More importantly, certain phosphate charges are excluded
from the summation in the second term �hence the prime
sign next to the sum�, namely, the charges located closer to
the point s than a certain cutoff distance �s �Fig. 11�. Similar
electrostatic cutoffs were used in other studies �27,29,42�.
The reason for introducing such a cutoff is that the DNA
elasticity has partially electrostatic origin, so that the ener-
getic penalty for DNA bending and twisting, approximated
by the elastic functional �29�, already includes the contribu-
tion from the electrostatic repulsion between neighboring
DNA charges. It is debatable what “neighboring” implies
here, i.e., how close should two DNA phosphates be in order
to significantly contribute to DNA elasticity. In this work, the
cutoff distance �s is chosen to be equal to the pitch H of the
DNA helix �H=36 Å�. This, on the one hand, is the size of
the smallest structural unit of DNA, beyond which it does
not make sense at all to use a continuum model of the double
helix, so the phosphate pairs within such unit are naturally
excluded from the explicit electrostatic term. On the other
hand, the forces of interaction between the phosphates, sepa-
rated by more than that distance from each other, are already
much smaller than the elastic force, as shown below. Thus,
even though the chosen cutoff �s might be too small, the
resulting concomitant stiffening of the DNA is negligible.
For comparison, calculations with cutoff values �s=1.5H
and �s=2H were also performed.

Thus, the electric field E, computed using �33�, is substi-

tuted into �31�, and the resulting body forces ḟ appear in Eqs.

�18�, �19�, and �21� in place of the previously zeroed terms
�68�. The solutions of the modified equations minimize the
energy functional

U = Uelastic + UQ − UQ,straight, �34�

where Uelastic is the elastic energy computed as in �29�, UQ is
the electrostatic energy computed, in accordance with �33�,
as

UQ =
1

4��°



0

1

��s��	
i

qi

exp�− ��ri�s��/��
��ri�s��

+ 2e�	
j

�
exp�− ��r j�s��/��

��r j�s�� �ds , �35�

and UQ,straight is the electrostatic “ground state” energy com-
puted using �35� for a straight DNA segment of the same
length as the studied loop. The continuous charge density
��s� used here is computed using �32�.

B. Changes to the computational algorithm

The electrostatic forces introduced above depend on the
conformation of the entire elastic loop due to the self-
repulsion term in �33�. This turns the previously ordinary
differential equations of elasticity into integro-differential
equations, and a new algorithm is required for solving them,
implemented as follows.

We start with a solution built for an uncharged elastic loop
and turn on the electrostatic interactions during yet another
iteration cycle. On each step of that cycle, Eqs. �18�–�28� are
solved with the electrostatic term �31� computed for the elec-
tric field Ei=wE,iE, where the “electrostatic weight” wE
grows linearly from 0 to 1 during the cycle. Additionally,
each step of the new iteration cycle becomes its own iterative
subcycle. The electric field Ei is computed at the beginning
of the subcycle and the equations are solved with this con-
stant field. Then the field is recomputed for the new confor-
mation of the elastic rod, the equations are solved again for
the new field, and so on until convergence of the rod to a
permanent conformation �and, consequently, of the field to a
permanent value� is achieved. The weight wE is kept constant
throughout the subcycle. To enforce convergence, the field
used in each round of the subcycle is weight averaged with
that used in the previous round:

Ei,j = waEi,j�actual� + �1 − wa�Ei,j−1. �36�

The averaging weight wa is selected by trial and error so as
to speed up convergence. For the lac repressor system, the
trivial choice of wa=0.5 turned out to be satisfactory.

Our approach to solving the integro-differential equations
assumes that the elastic rod conformation changes smoothly
with the growth of the electric field. For intricate rod confor-
mations, which might change in a complicated manner with
the addition of even small electrostatic forces, this approach
may conceivably fail. Yet, it worked well for the studied case
of the DNA loop clamped by the lac repressor and should
presumably work well for simple elastic rod conformations
corresponding to the lowest energy minima of short DNA
loops.

FIG. 11. Electrostatic interactions in the elastic rod problem.
The electric field E�s� is computed at each point s of the rod as the
sum of the “external” field Eext, produced by the charges qi not
associated with the elastic rod, and the “internal” field Eint, pro-
duced by the charges qj

int=2e� placed in the maxima of the charge
density ��s� of the elastic rod �32�. �ri�s�=r�s�−Ri and �r j�s�
=r�s�−r�sj� �cf. Eq. �33��. The part of the rod that lies within the
cutoff �s does not contribute to E�s�.
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C. Electrostatic effects for the 76 bp loops

Equations �18�–�28� with the electrostatic term were
solved for the 76 bp DNA loops for the ionic strength cs in
the range of 0–100 mM and three different cutoff values �s
�H, 1.5H, 2H�. The computations were performed with the
previously used elastic moduli 
=4/15 and �=16/15. The
external charges included in the model were those associated

with the phosphates of the DNA segments from the crystal
structure �37� �see Fig. 11�. The iteration cycle was divided
into 100 subcycles, which showed a remarkable conver-
gence: the length of a subcycle never exceeded three itera-
tion rounds.

The changes in structure and energy of the elastic loops
due to electrostatic interactions are presented in Fig. 12 for
an ionic strength of 10 mM and the exclusion radius of H.
The structure of the U solution exhibits little change: the
rmsd between the original �wE=0� and the final �wE=1�
structures is less than 1 h. Neither the curvature nor the twist
profiles of this loop change significantly �Fig. 5, third col-
umn�. The energy of the loop changes by the electrostatic
contribution of 6.1 kT, mainly accounted for by the interac-
tion of the loop termini with each other and with the external
DNA segments. The self-repulsion and the repulsion from
the external DNA charges contribute about equally to the
electrostatic energy.

In contrast, the near self-contact in the O structure of the
loop �Figs. 7 and 12�d�� causes a significant change in the O
loop structure and energy when electrostatics is turned on
�Figs. 12�b�, 12�d�, and 12�f��. The structure opens up, the
separation at the point of the near self-crossing increases, the
rmsd between the final and the original structures reaches 9 h
�Fig. 12�f��, and the DNA overwinding almost doubles �Fig.
5, right column of the bottom panel�. This allows the elec-
trostatic energy to drop from 13.2 to 8.0 kT, yet the elastic
energy grows by 1.7 kT �Fig. 12�b��; the total energy of the
charged O loop reaches 36.3 kT so that the energy difference
from the U loop increases from 3.3 to 7.4 kT. As in the case
of the U loop, the main contribution to the electrostatic in-
teractions comes from the loop ends; the energy distribution
between the self-repulsion and the repulsion from the exter-
nal DNA charges is roughly equal.

Naturally, the calculated effect diminishes when the ionic
strength of the solution increases and the electrostatics be-
comes better screened. Figure 13 shows structure and energy
of the U and O loops when the ionic strength is increased
from 10 to 100 mM �this range covers physiological ionic
strengths�. Structure and elastic energy of the U loop show
almost no change again; the total energy of the loop de-
creases from 29.7 to 23.5 kT due to the drop in the electro-
static energy. The structure of the O loop returns to almost
what it was before the electrostatics was computed �within
the rmsd of 2.2 h�; the elastic energy of the loop drops back
to 26.6 kT and the electrostatic energy to a mere 0.5 kT.
These results show that theoretical estimates of the energy of
a DNA loop formation in vivo need to employ as good an
estimate of the ionic strength conditions as possible.

The lac repressor loops were extensively used to analyze
all the assumptions and approximations of our model and
showed that those were satisfactory indeed. The calculations
were repeated for the self-repulsion cutoffs of �s=1.5H and
�s=2H. The resulting changes in the loop energy at cs
=10 mM equal to only �Uh−1.5h=0.35 kT and �Uh−2h
=0.75 kT for either loop; these values drop below 0.1 kT
when the ionic strength rises to 100 mM. The difference lies
mainly in the electrostatic energy, and the elastic energy is
always within 0.1 kT of that of the structures obtained with
�s=H. Accordingly, the rmsd from the uncharged structure

FIG. 12. Changes in structure and energy of the 76 bp DNA
loops after electrostatic interactions are taken into account. Left
column: U solution; right column: O solution. �a�, �b� Elastic �E�,
electrostatic �Q�, and total �T� energy of the modeled loop versus
the electrostatic weight wE. �c�, �d� Uncharged �wE=0, in light
color� and completely charged �wE=1, in dark color� structures of
the loops. The bottom views are rotated by 70° around the vertical
axis relative to the top views. �e�, �f� The rmsd between the charged
and uncharged loop structures. The data correspond to 
=4/15, �
=16/15, ionic strength cs=10 mM, and the electrostatics exclusion
radius �s=H.
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varies by at most 0.1 h for the different cutoffs �Figs. 13�e�
and 13�f��. Therefore, even the largest cutoff �s=2H works
satisfactorily for the electrostatic calculations, while at the
same time increasing the speed of computations.

The force of electrostatic interactions did not exceed
1–2 pN per base pair, compared to the calculated elastic
force in the range of 10–20 pN, and depended very little on

the cutoff. Therefore, the conceivable stiffening of the rod
due to possibly overcounting phosphate pairs in the electro-
static calculations is negligible. Evaluating the electric field
and energy using the sums �33� and �35� instead of a more
consistent integral over the loop centerline results in no sig-
nificant error either. Test calculations showed that in all the
studied cases the electrostatic field and energy evaluated by
the integral and by the discrete sum differ by at most 2
�10−4 of their values.

Finally, it was tested in how far the particular choice �32�
for the charge density of DNA, ��s�, influences the compu-
tational results. The calculations were repeated for the con-
stant charge density ���s�=QDNA �in dimensionless represen-
tation�. The energies of the loop conformation never changed
by more than 10−4 of their values over the whole range of cs
and �s; the rmsd between the loop conformations obtained
with different ��s� never exceeded 0.01 h. Therefore, the
electrostatic properties of the elastic rod in the current model
can safely be computed with constant electrostatic density,
further saving computational costs.

D. Electrostatic effects for the 385 bp loops

The electrostatic computations were similarly performed
for the 385 bp loops, in the same range of ionic strength and
for the exclusion radii of 2H and 3H. For the U and O loops,
the results were qualitatively the same as in the case of the
short loops. The loops became more open and straightened
up; their energy increased by 0–6 kT, depending on the
ionic strength �Fig. 14, cf. Table II�. The U loop was again
the one to change its structure and energy to the least extent
upon turning on the electrostatics. The results of the compu-
tations were practically the same for both cutoff radii, were
not influenced by the electric field discretization �33�, and
were not considerably changed by replacing the charge den-
sity function ��s� from Eq. �32� with the constant function
���s�.

Structurally, the long loops changed more significantly
upon introducing the electrostatic repulsion than the short
loops did. The rmsd values reached 10 h for the U loop and
25 h for the O loop �Fig. 14, cf. Figs. 13�e� and 13�f��. As
before, the major part of electrostatic repulsion came from
the ends of the loop, including the protein-bound DNA seg-
ments, brought closely together by the protein. This repul-
sion tended to change the direction of the ends of the loop,
bending them away from each other. In the case of the short
loops, it was impossible to noticeably change the direction of
the ends without significantly stressing the rest of the loop.
Yet the long loops could more easily accommodate some
opening up at the ends and, therefore, changed their struc-
tures more significantly.

The larger structural change necessitated longer calcula-
tions. For the long loops, the iteration steps typically con-
sisted of five to six iteration subcycles, and even of a few
dozen subcycles at especially stiff steps.

The U� and O� loops showed a similar response to the
electrostatics at high ionic strength �above 25 mM�. Their
electrostatic energy was in the range 0–5 kT, and the rmsd
from their uncharged structures amounted to up to 10 h for

FIG. 13. The effect of salt on the structure and energy of the 76
bp DNA loops. Left column: U solution; right column: O solution.
�a�, �b� Elastic �E�, electrostatic �Q�, and total �T� energy of the
elastic loop versus the ionic strength cs. Shown are only the plots
for the exclusion radius of H; the energy plots for the other exclu-
sion radii are almost indistinguishable. �c�, �d� Snapshots of the
elastic loop structures for 10 mM �dark color�, 25 mM �medium
color�, and 100 mM �light color�. Points where the snapshots were
taken are shown as dots of the corresponding colors on the axes of
panels �a�, �b�, �e�, �f�. The bottom views are rotated by 70° around
the vertical axis relative to the top views. �e�, �f� The rmsd of the
loop structures from those computed without electrostatics �equiva-
lent to infinitely high salt concentration�. The lines, from top to
bottom, correspond to the exclusion radii of H, 1.5H, and 2H.
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the U� solution and up to 15 h for the O� solution �Fig. 14�.
At low ionic strength, the stronger electrostatics rendered the
solutions unstable: the U� solution transformed into the U
solution, and the O� solution into the O solution, when com-
puted with no salt screening �0 mM�. What triggered the
switch was apparently the ever increasing bending of the
ends of the loops away from each other that, in combination
with the bending anisotropy, also caused high twist oscilla-
tions near the loop ends �as described in Sec. IV B�. The
combination of twisting and bending caused the loops to flip
up—as one can make a piece of wire flip up and down by
twisting its ends between one’s fingers.

For the intermediate values of ionic strength
�10–20 mM�, the iterative procedure for the U� and O�
loops did not converge, caught in the oscillations between
the up and down states of each loop. In this case, using the
larger electrostatic exclusion radius improved convergence.
With �s=2H, the iterations did not converge for the ionic
strength of 15 and 20 mM; convergence for 10 mM was
achieved, but resulted in flipping to the stable solutions. With
�s=3H, the iterations successfully converged to U� and O�

solutions �albeit somewhat changed due to the electrostatics�
for the 15 and 20 mM ionic strength and did not converge for
10 mM.

Such instability of the U� and O� loops serves, of course,
as another argument for disregarding them in favor of the
stable U and O solutions.

Upon introducing the electrostatic self-repulsion, an inter-
esting experiment could be performed. Self-crossing by the
solutions during the iteration cycles, described in Sec. III B,
was no longer possible. Therefore, one could explore
whether superhelical structures of the loop could be built by
further twisting the ends of the loop. One extra turn of the
cross section at the s=1 end did generate new structures of
the U and O loops. Yet, those structures were so stressed and
had such a high energy �on the order of 50 kT higher than
their predecessors� that it was obvious that those structures
do not play any part at all in the realistic thermodynamic
ensemble of the lac repressor loops. Any further twisting of
the ends resulted in nonconvergence of the iterative proce-
dure. Clearly, the 385 bp length of a DNA loop is insufficient
to produce a rich spectrum of superhelical structures.

VI. DISCUSSION

In this section, we summarize and analyze the presented
elastic rod model of DNA, describe its present and possible
future applications, and, finally, summarize what has been
learned about the lac repressor-DNA complex from the pre-
sented case study.

A. Summary of the model

The presented modeling method allows one to construct a
numerical model of a DNA loop with fixed ends. The model
approximates the DNA as an electrically charged elastic rod.
The equilibrium conformations of the rod are computed by
solving the modified Kirchhoff equations of elasticity with
the boundary conditions obtained from the known positions
and orientations of the ends of the loop. The numerical so-
lutions to the equations yield the detailed geometric proper-
ties of the loop �the centerline coordinates, the curvature, and
twist at each point along the loop� and the elastic stress and
torque profiles along the loop. From these data, one can cal-
culate further properties of the loop, such as the linking num-
ber and the radius of gyration, the electric field around the
loop, distances between various sites of special interest on
the loop, etc. The energy of the loop is estimated from the
functional �29� or �34�. The solutions to the Kirchhoff equa-
tions represent the equilibrium conformations of the rod that
minimize the energy functionals �69�, i.e., the zero-
temperature structures of the DNA loop, the equilibrium
points around which the loop fluctuates at a finite tempera-
ture.

The solutions to Kirchhoff equations are generated from
previous or otherwise known solutions, e.g., those built for
different parameters or boundary conditions, using the con-
tinuation procedure described above. A family of topologi-
cally different loop structures can be generated by varying
the initial loop conformations or by subjecting the obtained

FIG. 14. The effect of ionic strength on structure and energy of
the 385 bp DNA loops. �a� Elastic �E�, electrostatic �Q�, and total
�T� energy of the U, O, U�, and O� loops plotted versus the ionic
strength cs. �b� The rmsd of the loops from their uncharged struc-
tures. The missing points in the U� /O� plot indicate solutions, miss-
ing due to nonconvergence of the iterative procedure �see text�. The
data correspond to �s=3H.
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solutions to simple geometrical transformations, such as
twisting and rotating the ends of the loop. The energy analy-
sis of the obtained conformations allows one to focus on the
lowest-energy structures of the loop, which presumably
dominate in the Boltzmann ensemble of conformations of the
real DNA loop.

The presented model advances the existing analytical and
computational DNA models based on the theory of elasticity
�17,22–24,42,55,62� by adding more versatility and flexibil-
ity to the extended Kirchhoff equations. The equations de-
rived here describe DNA as an anisotropically bendable elas-
tic rod with intrinsic twist and curvature, carrying electric
charge and possibly interacting with external forces and
torques �35�. The model parameters are considered to be the
functions of the rod arclength, thus providing the means for
modeling sequence-specific properties of DNA. Most of the
earlier models excluded at least one of these DNA properties.
Finally, the proposed numerical algorithm allows one to
solve the extended Kirchhoff equations fast for an arbitrary
set of boundary conditions, which is important during the
multi-scale simulations when the assumed boundaries of the
loop fluctuate randomly.

B. Analysis of the model

The case study of the DNA loops clamped by the lac
repressor allowed us to analyze the importance of including
the various physical properties of DNA in the model. It has
been shown that properly accounting for anisotropic bend-
ability of the elastic rod in combination with the intrinsic
twist is important for the correct estimate of twist and bend
distribution along the DNA loop. In particular, the seesaw
pattern of the curvature distribution and the corresponding
fluctuations of the twist are not observed for the isotropically
bendable loop �cf. Fig. 5�. The estimate of the overall energy
and shape of the loop proved to be less sensitive to the bend-
ing anisotropy, at least when the model employs the classical
relation �30� between the principal bending moduli A1 and A2
and the effective bending modulus A used traditionally to fit
the experimental data.

It has been further shown that electrostatic interactions are
screened out by physiological salt concentrations for the
open conformations of the modeled loop and do not affect
the shape of the loop, although they do contribute to some
extent to the loop energy. In contrast, the loop conformations
with near self-contacts are strongly affected by electrostatics,
which therefore must be accounted for when dealing with
such conformations. The effect of sequence-dependent elas-
tic properties of DNA has not been studied here; other stud-
ies suggest that such an effect may be significant
�23,31,33,53�. The sequence-dependent properties can be in-
troduced into Eqs. �18�–�28� via parameter-functions of arc-
length 
�s�, ��s�, ��s�, �1,2

° �s�, �°�s� constructed for each
specific loop sequence using available experimental data
�23,32,33,48� �cf. Appendix C�.

Thus, the complexity of the more universal model can be
adjusted for each specific problem regarding a DNA loop.
For example, the simplification of an isotropically bendable
elastic rod with constant elastic moduli should suffice for

determining the global properties of the loop, such as its
centerline geometry, its linking number, its radius of gyra-
tion, etc., with sufficient accuracy �cf. Figs. 3, 7, 12, and 13�.
On the other hand, if the local structure in a certain section of
the loop needs to be predicted, e.g., with a goal to study how
the formation of the loop changes the binding properties of a
certain protein in that area �70�, then the anisotropic loop
model becomes essential, as has been demonstrated in Sec.
IV. Finally, electrostatic interactions need to be used in the
model for correctly predicting the structure and energy of
DNA loops that exhibit either a close self-contact or a close
contact with external electric charges involved in the mod-
eled complex. Such conformations are exemplified by the O
loop described here or by the tightly wound superhelical
structures �10,13,15,20,24,27,42�. Electrostatics is also es-
sential for studying the effect of salt concentration on the
structure and energetics of DNA loops �20,27�.

The parameter-functions included in the model, such as
the elastic moduli and the intrinsic curvature/twist, in some
cases can significantly influence the solution, as has been
illustrated and discussed above. The simplified model, rely-
ing on the commonly accepted isotropic elastic moduli, is
good for loop energy estimates within several kT and for
selecting the best of the alternative DNA loop topologies.
But quantitative predictions of more subtle structural and
energetic properties of DNA loops, such as the local loop
structure or the sequence-specific loop variations, require
further refinement and adjustment of the model parameters
on the basis of experimental data. Since some experimental
results, such as the loop bending energies, can be reproduced
by different combinations of the model parameters �cf. Figs.
9 and 10�, the data for the model refinement should come
from a variety of sources: from DNA micromanipulation ex-
periments �50,52,65,71�, from the analysis of DNA x-ray
structures �32,33�, from experiments on DNA interaction
with DNA-binding proteins, including topoisomerases �72�,
and from the energetics of DNA minicircles �23,73�.

The modeling method is best applied to DNA loops in the
range of 50 to several hundred bp. The length of shorter
DNA segments becomes comparable to their diameter, thus
making the Kirchhoff rod approximation invalid. The longer
DNA segments possess large families of structures
�15,20,24� all of which may not be discovered by our sim-
plified search procedure. Good representative structures of
long loops can certainly be generated, but other structures of
comparable low energy are likely to be missed. For the loops
of intermediate lengths, like the ones folded by the lac re-
pressor, only a few topologically different structures of com-
parable energy can exist and our simplified search of the
conformational space should be sufficient for discovering all
the members of the topological ensemble.

Since our method produces only zero-temperature struc-
tures of the loop, limiting the analysis to only these struc-
tures results in neglecting the thermal vibrations of the loop
and the related entropic effects. For DNA loops not exceed-
ing one to two persistence lengths, the thermal vibrations are
likely to be small, and the entropic effects insignificant. For
longer loops, the entropic effects may be larger and confor-
mational sampling studies may become necessary, for which
the generated equilibrium loop structures render excellent
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starting points. A cheaper ad hoc way of accounting for the
thermal oscillations consists in interpreting the loop proper-
ties, e.g., its energy or the forces of protein-DNA interaction,
as a series of Gaussian random values distributed around the
average values calculated for the equilibrium loop structure
�25�.

Building the family of the lowest-energy conformations of
a DNA loop using the suggested numerical algorithm is a
fast process that takes only several hours of computation on
a single workstation if done from scratch. If done on the
basis of a good initial guess for each loop conformation, e.g.,
the same conformation previously obtained for a slightly dif-
ferent set of parameters or boundary conditions, then gener-
ating the loop structures takes mere minutes. Of course, such
approach works well for short loops only—for longer loops
with numerous possible structures, an extensive conforma-
tional sampling is indispensable.

It should be noted that, while simple and fast, our con-
tinuation procedure may sometimes fail due to the nonlinear
nature of Kirchhoff equations. The solutions to the equations
are known to respond nontrivially to changes in the problem
parameters or boundary conditions �16,20,24,62�. If a point
of instability is reached, the solution will precipitously
change in response to even a small change in the parameter,
resulting in a failure of the numerical BVP solver. The solver
will also fail when the evolving solution reaches a bifurca-
tion point �22,24�, as did the U� and O� solutions at low
ionic strength �Sec. V D�.

If such problems are encountered, it is recommended to
thoroughly analyze the nature of the nonconvergence. A
point of abrupt transition can sometimes be circumvented by
choosing an alternative pathway through the conformational
space. For instance, if rotating one end of the loop clockwise
by a certain angle � meets a transition point half-way
through, then that end might instead be rotated by 2-�
counter-clockwise, reaching the desired endpoint without go-
ing through the abrupt transition. In the case of a bifurcation,
an approximate solution on each of the bifurcating branches
can be guessed from the intermediate elastic rod structures
produced by the nonconverging numerical solver. Then the
continuation procedure can be reinitiated for each branch
several steps away from the bifurcation point, starting from
the guessed solutions.

C. Applications of the model

The speed and high adaptability of our modeling approach
makes it a good candidate for multi-scale modeling simula-
tions of protein-DNA complexes. The most straightforward
application consists in studying the structure and dynamics
of a multi-protein aggregate that clamps a long DNA loop
�3–5,13,36�. Such a study has been conducted recently for
the lac repressor-DNA complex �25,26�. The elastic rod
model of the 76 bp DNA loop, built as described here,
yielded the forces and torques that the loop exerted on the
lac repressor. These forces and torques were included in the
MD simulation of the all-atom structure of the lac repressor
complex with the bound DNA segments, similarly to steered
molecular dynamics simulations �74�. The forces were used

either directly or served as a basis for generating a time
series of random forces �26�. As the structure of the protein-
DNA complex changed during the simulation, the boundary
conditions were updated using the most recent coordinates of
the protein-bound DNA segments and the Kirchhoff equa-
tions were re-solved yielding new values of the forces and
torques to be used in the simulation. The multi-scale simula-
tion provided a dynamic picture of the lac repressor complex
with the DNA loop, revealing the main degrees of freedom in
the lac repressor structural dynamics and suggesting a “pro-
tein lock” mechanism of the lac repressor cleft opening un-
der the stress of the DNA loop �see �26,25� for further de-
tail�.

The elastic rod modeling method provides also a fast and
convenient tool for mimicking the effect of protein binding
within DNA loops. Another recent study �70� described the
binding of the catabolite gene activator protein �CAP�
�1,2,75� to a DNA site located within the loop folded by the
lac repressor. The specific geometry that CAP enforces in
DNA upon binding �two �45° kinks separated by 10 bp of
straight DNA� was mimicked in the corresponding segment
of the DNA loop by accordingly designed intrinsic curvature
and twist parameter-functions �1,2

° �s�, �° �s� �70�. It was dis-
covered that CAP binding switches the preferred loop topol-
ogy from the U to the O structure; the resulting drop in the
free energy of the loop explains the experimentally observed
cooperativity in DNA binding between CAP and lac repres-
sor �76�. Fitting an all-atom structure of CAP inside the con-
structed DNA loop and replacing the elastic rod DNA scaf-
fold with an all-atom DNA structure �cf. Appendix D�
resulted in an all-atom model of the whole ternary complex
between CAP, lac repressor, and DNA, ready for further all-
atom or multi-scale simulations.

All-atom structures of whole DNA loops can be built on
the basis of the calculated elastic rod conformations of the
loops as described in Appendix D and illustrated in Figs. 2�c�
and 2�d�. Knowing the all-atom structure at any point of the
loop helps one to address many interesting issues. For ex-
ample, if a binding site of a regulatory protein, such as CAP,
is located within the loop, then the change in the structure of
that site upon loop formation is readily assessed and the
influence of the DNA looping on the binding of that protein
can be deduced from the change. Likewise, any segment of
the loop with a nontrivial deformation �e.g., an especially
strong bend/twist� can be studied in a separate multi-scale
simulation, using the elastic forces and torques at the ends of
that segment predicted by the elastic rod model. The result-
ing corrections to the structure and elastic properties of that
segment may in turn amend the predicted structure of the
whole loop. Finally, the advent of much increased computa-
tional power may render even all-atom simulations of the
protein complexes with whole DNA loops feasible. For such
simulations, the all-atom loop structures, predicted on the
basis of the elastic rod model of the loops, can serve as good
starting points.

The described multi-scale modeling techniques and their
combinations pave the way for extensive studies of multi-
protein-DNA complexes that play a crucial role in the func-
tion of the genome of every living organism �1–7,75�. For
example, multiple RNA polymerase components and tran-

MODELING DNA LOOPS USING THE THEORY OF ELASTICITY PHYSICAL REVIEW E 73, 031919 �2006�

031919-19



scription factor proteins bind at or near the promoter region
when transcription of a gene is being initiated; complex
looping and buckling of the DNA between the binding sites
ensues. Helicase and gyrase proteins concurrently alter DNA
topology during replication causing diverse looping and coil-
ing. A complex mesh of nucleosomes, loose DNA loops, and
DNA-binding proteins forms the essence of eucaryotic chro-
matin. The growing number of known protein structures
makes multi-scale simulations of such biomolecular systems
possible. Such simulations, dealing with whole systems
rather than focusing on the individual protein and DNA com-
ponents, would yield a detailed picture of protein-DNA in-
teraction and dynamics during key events in the life of a cell,
leading to much improved understanding of these events.

D. Further development of the model

Several extensions of the model may prove necessary in
order to achieve a realistic DNA description in the future
studies suggested above. One such extension consists in add-
ing terms accounting for DNA deformability to Eqs.
�18�–�28�, as discussed in Appendix A. DNA is known to be
a shearable and stretchable molecule �17,32,33,42,50,71,77�;
adding the deformability terms to Eqs. �18�–�28� may influ-
ence both the local and global structure of the modeled DNA
loop.

Adding a steric repulsion force term to Eqs. �18�–�28� is
critical for modeling DNA interactions with positively
charged biomolecular entities, such as DNA-binding tran-
scription factor proteins �75,78� or the nucleosome histone
core �6�. Without the steric repulsion, a solution to Eqs.
�18�–�28� may collapse onto a positive external charge in-
cluded in the model, resulting in nonconvergence of the it-
erative BVP solver. Technically, the steric repulsion force is
introduced on the basis of a 6–12 van der Waals potential in
the same way as the electrostatic repulsion force �31�–�33� is
introduced on the basis of the screened Coulomb potential.
The resulting integro-differential Kirchhoff equations are
solved using the iterative algorithm developed here.

Finally, the electrostatic interactions in our model can be
rendered more realistic by placing the DNA charges on the
periphery of the modeled DNA helix, where they belong in
reality, rather than on the centerline as presently done �cf.
Eq. �33��. This modification would correct the DNA structure
at the points of close contact with external charges or with
itself, or at the points of a strong bend. The realistic charge
placement can be achieved by using a three-dimensional
charge density function instead of the simplified function
�32�. Moving the charges away from the centerline would
give rise to electrostatic torques in each cross section of the
rod, changing the local structure and the elastic force/torque
distribution at the points of the rod where the electric field is
strong.

E. Lac repressor loops

To conclude the paper, we summarize what has been
learned with our method about the specific system, the lac
repressor and its DNA loops. For both possible lengths of the
loop, it has been shown that the underwound loop structure

pointing away from the lac repressor should be predominant
under thermodynamic equilibrium conditions, unless other
biomolecules interfere. This conclusion holds true despite
some uncertainty in the model parameters. The predicted
structure of the U loop depends only slightly on the salt
concentration, although the loop energy exhibits a stronger
dependence. The experimentally observed energy of the loop
can be obtained with the right combination of parameters.
For further applications, the parameters have to be exten-
sively tested with other protein-DNA systems.

The predicted loop structures yield the forces of lac
repressor-DNA interaction, paving the way to multi-scale
studies of the lac repressor-DNA complex, as described
above. The already accomplished multi-scale studies gave
important insights into the dynamics of the protein-DNA
complex, elucidated the structural changes of the lac repres-
sor in response to the stress of the bent DNA loop �25,26�,
and offered an explanation for DNA-binding synergy be-
tween the lac repressor and the major transcription activator
CAP �70�.
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APPENDIX A

DNA deformability can be described in our model by
three additional variables, combined into the shift vector
��s�. Its components �1,2 are the amount of shear in the two
principal directions, and the component �3 is the amount of
extension along the normal d3 �17,42�. The vector of shift �
and the elastic force N are linearly related to each other,
similarly to the vector of strains k and the torque M �cf. Eq.
�11��:

N�s� = B1�1d1 + B2�2d2 + D�3d3, �A1�

where B1,2 are the shear moduli in the two principal direc-
tions, and D is the extension modulus of DNA.

Thus introduced, the deformability terms change Eq. �2�
into

ṙ = � + d3, �A2�

propagating into Eq. �13� and Eqs. �18�–�28�. The system
�18�–�28� becomes of 16th rather than 13th order and could
be similarly solved by the continuation method.

APPENDIX B

According to �61,80�, the equilibrium constant of binding
of the lac repressor to a single-operator DNA equals about
10−11 M for O1 and 10−9 M for O3 at high salt concentration
�0.2 M�. This results in the free energies of binding �GO1
=kT log KO1

=−25 kT and �GO3
=kT log KO3

=−21 kT. The
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equilibrium binding constant of the lac repressor to the DNA
promoter, containing both O1 and O3 sites, equals 3.4–6.2
�10−12 M �61�, resulting in the free energy �GO1−O3

�
−26 kT. This results in the free energy of formation of the 76
bp DNA loop �Gloop=�GO1−O3

−�GO1
−�GO3

=20 kT.

APPENDIX C

The sequence-dependent DNA elasticity and geometry
can be introduced into Eqs. �18�–�28� by constructing the
appropriate parameter-functions 
�s� ,��s� ,��s� ,�1,2

° �s� , and
�°�s� for the specific sequence of each studied DNA loop.
Such functions can be based on the elasticity parameters de-
rived from the experimental data on DNA deformations and
dynamics, e.g., as outlined in �23,32,33,48�. One can first
assign the values 
�sj+1/2�, etc., according to the DNA se-
quence at the points sj+1/2= �j−1/2�h / l, located midway be-
tween each successive �jth and �j+1�-th� base pairs. Then,
the parameter-functions can be constructed as either smooth
�e.g., spline-based� functions connecting the points
(sj+1/2 ,
�sj+1/2�), or piecewise functions, adopting the con-
stant values 
�sj+1/2� in the intervals jh / l	s	 �j+1�h / l be-
tween the successive base pairs and smoothly connected in
narrow zones between the intervals.

APPENDIX D

For a DNA loop of a known sequence, the elastic rod
model of that loop can be replaced by an all-atom model
using the following algorithm. First, an idealized all-atom
structure is built using standard biomodeling software �e.g.,
VMD �79� or Quanta �81�� for each base pair of the loop,
including the phosphodeoxyribose backbone groups. Second,
the elastic rod solution of the extended Kirchhoff equations,
namely, q1−4�s�, is used to obtain the local coordinate frames
(d1�s� ,d2�s� ,d3�s�) �46� at the points si= ih / l along the loop
centerline that correspond to the location of each �ith� base
pair. Third, the built all-atom structures of the base pairs are
centered at the points r�si� and aligned with the coordinate
frames (d1�si� ,d2�si� ,d3�si�) as illustrated in Fig. 1�d�.
Fourth, several rounds of energy minimization are conducted
for the thus-built all-atom DNA loop using standard molecu-
lar modeling packages �e.g., NAMD �82�� and forcefields
�e.g., CHARM22 �83��. The minimization relieves bad inter-
atomic contacts and chemical group conformations resulting
from the idealized initial placement, especially in the DNA
backbone. The resulting all-atom structure, while still
stressed at certain points and overidealized at others, presents
a good starting point for all-atom or multi-scale simulations,
as described in Sec. VI C.
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